Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.067
Filtrar
1.
Nanoscale ; 16(16): 7892-7907, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38568096

RESUMO

Magnetic hyperthermia-based cancer therapy (MHCT) holds great promise as a non-invasive approach utilizing heat generated by an alternating magnetic field for effective cancer treatment. For an efficacious therapeutic response, it is crucial to deliver therapeutic agents selectively at the depth of tumors. In this study, we present a new strategy using the naturally occurring tumor-colonizing bacteria Escherichia coli (E. coli) as a carrier to deliver magnetic nanoparticles to hypoxic tumor cores for effective MHCT. Self-propelling delivery agents, "nano-bacteriomagnets" (BacMags), were developed by incorporating anisotropic magnetic nanocubes into E. coli which demonstrated significantly improved hyperthermic performance, leading to an impressive 85% cell death in pancreatic cancer. The in vivo anti-cancer response was validated in a syngeneic xenograft model with a 50% tumor inhibition rate within 20 days and a complete tumor regression within 30 days. This proof-of-concept study demonstrates the potential of utilizing anaerobic bacteria for the delivery of magnetic nanocarriers as a smart therapeutic approach for enhanced MHCT.


Assuntos
Escherichia coli , Hipertermia Induzida , Nanopartículas de Magnetita , Neoplasias Pancreáticas , Animais , Camundongos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Humanos , Linhagem Celular Tumoral , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Chromatogr A ; 1722: 464859, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604056

RESUMO

In this study, molecularly imprinted polymers (MIPs) were prepared for the specific recognition of organophosphorus pesticides and a rapid, efficient and simple method was established for the detection of dimethoate (DIT) in food samples. Fe3O4 magnetic nanoparticles were synthesized by co-precipitation, and Fe3O4/ZIF-8 complexes were prepared by a modified in-situ polymerization method, and then magnetic molecularly imprinted polymers (MMIPs) were prepared and synthetic route was optimized by applying density functional theory (DFT). The morphological characterization showed that the MMIPs were coarse porous spheres with an average particle size of 50 nm. The synthesized materials are highly selective for the organophosphorus pesticide dimethoate with an adsorption capacity of 461.50 mg·g-1 and are effective resistance to matrix effects. A novel method for the determination of DIT in cabbage was developed using the prepared MMIPs in combination with HPLC. The practical results showed that the method can meet the requirements for the determination of DIT in cabbage with recoveries of 85.6-121.1 % and detection limits of 0.033 µg·kg-1.


Assuntos
Brassica , Dimetoato , Limite de Detecção , Polímeros Molecularmente Impressos , Dimetoato/análise , Brassica/química , Polímeros Molecularmente Impressos/química , Adsorção , Cromatografia Líquida de Alta Pressão/métodos , Impressão Molecular/métodos , Nanopartículas de Magnetita/química , Extração em Fase Sólida/métodos , Contaminação de Alimentos/análise
3.
J Chromatogr A ; 1722: 464899, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38626542

RESUMO

Perfluoroalkyl substances (PFAS) are persistent organic pollutants that pose significant risks to human health and the environment. Efficient and selective enrichment of these compounds was crucial for their accurate detection and quantification in complex matrices. Herein, we report a novel magnetic solid-phase extraction (MSPE) method using fluorine-functionalized magnetic amino-microporous organic network (Fe3O4@MONNH2@F7) adsorbent for the efficient enrichment of PFAS from aqueous samples. The core-shell Fe3O4@MONNH2@F7 nanosphere was synthesized, featuring magnetic Fe3O4 nanoparticles as the core and a porous amino-functionalized MONs coating as the shell, which was further modified by fluorination. The synthesized adsorbent material exhibited high specific surface area, hydrophobicity, and abundant fluorine groups, facilitating efficient and selective adsorption of PFAS via electrostatic attraction, hydrophobic-hydrophobic interactions, fluorine-fluorine interactions, π-CF interactions and hydrogen bonding. Furthermore, the MSPE method coupled with ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) allowed for the rapid, sensitive, and accurate determination of ultra-trace PFAS in real water samples, human serum, and human follicular fluid. Under optimal conditions, the established MSPE method demonstrated a linear range (2 to 2000 ng L-1), with a correlation coefficient exceeding 0.9977, low limits of detection ranging from 0.54 to 1.47 ng L-1, with a relative standard deviation (RSD) < 9.1%. Additionally, the method showed excellent performance in complex real samples (recovery ratio of 81.7 to 121.6 %). The adsorption mechanism was investigated through kinetic, isotherm, and molecular simulation studies, revealing that the introduction of fluorine groups enhanced the hydrophobic interaction and fluorine-fluorine attraction between the adsorbent and PFAS. This work provides a proof-of-concept strategy for designing adsorbent materials with high efficiency and selectivity by post-modification, which has great potential for the detection and analysis of PFAS in complex samples.


Assuntos
Flúor , Fluorocarbonos , Nanopartículas de Magnetita , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Poluentes Químicos da Água , Fluorocarbonos/química , Fluorocarbonos/análise , Fluorocarbonos/isolamento & purificação , Flúor/química , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos , Humanos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Cromatografia Líquida de Alta Pressão/métodos , Porosidade , Nanopartículas de Magnetita/química , Interações Hidrofóbicas e Hidrofílicas , Limite de Detecção
4.
Mikrochim Acta ; 191(5): 273, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635063

RESUMO

Pathogenic bacteria, including drug-resistant variants such as methicillin-resistant Staphylococcus aureus (MRSA), can cause severe infections in the human body. Early detection of MRSA is essential for clinical diagnosis and proper treatment, considering the distinct therapeutic strategies for methicillin-sensitive S. aureus (MSSA) and MRSA infections. However, the similarities between MRSA and MSSA properties present a challenge in promptly and accurately distinguishing between them. This work introduces an approach to differentiate MRSA from MSSA utilizing matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) in conjunction with a neural network-based classification model. Four distinct strains of S. aureus were utilized, comprising three MSSA strains and one MRSA strain. The classification accuracy of our model ranges from ~ 92 to ~ 97% for each strain. We used deep SHapley Additive exPlanations to reveal the unique feature peaks for each bacterial strain. Furthermore, Fe3O4 MNPs were used as affinity probes for sample enrichment to eliminate the overnight culture and reduce the time in sample preparation. The limit of detection of the MNP-based affinity approach toward S. aureus combined with our machine learning strategy was as low as ~ 8 × 103 CFU mL-1. The feasibility of using the current approach for the identification of S. aureus in juice samples was also demonstrated.


Assuntos
Nanopartículas de Magnetita , Staphylococcus aureus Resistente à Meticilina , Humanos , Staphylococcus aureus , Meticilina , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Aprendizado de Máquina
5.
Mikrochim Acta ; 191(5): 285, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652174

RESUMO

One significant constraint in the advancement of biosensors is the signal-to-noise ratio, which is adversely affected by the presence of interfering factors such as blood in the sample matrix. In the present investigation, a specific aptamer binding was chosen for its affinity, while exhibiting no binding affinity towards non-target bacterial cells. This selective binding property was leveraged to facilitate the production of magnetic microparticles decorated with aptamers. A novel assay was developed to effectively isolate S. pneumoniae from PBS or directly from blood samples using an aptamer with an affinity constant of 72.8 nM. The capture experiments demonstrated efficiencies up to 87% and 66% are achievable for isolating spiked S. pneumoniae in 1 mL PBS and blood samples, respectively.


Assuntos
Aptâmeros de Nucleotídeos , Dióxido de Silício , Aptâmeros de Nucleotídeos/química , Dióxido de Silício/química , Streptococcus pneumoniae/isolamento & purificação , Streptococcus pneumoniae/química , Humanos , Técnicas Biossensoriais/métodos , Nanopartículas de Magnetita/química
6.
Dalton Trans ; 53(16): 6974-6982, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38563069

RESUMO

Tubular structured composites have attracted great interest in catalysis research owing to their void-confinement effects. In this work, we synthesized a pair of hollow N-doped carbon microtubes (NCMTs) with Fe3O4 nanoparticles (NPs) encapsulated inside NCMTs (Fe3O4@NCMTs) and supported outside NCMTs (NCMTs@Fe3O4) while keeping other structural features the same. The impact of structural effects on the catalytic activities was investigated by comparing a pair of hollow-structured nanocomposites. It was found that the Fe3O4@NCMTs possessed a higher peroxidase-like activity when compared with NCMTs@Fe3O4, demonstrating structural superiority of Fe3O4@NCMTs. Based on the excellent peroxidase-like catalytic activity and stability of Fe3O4@NCMTs, an ultra-sensitive colorimetric method was developed for the detection of H2O2 and GSH with detection limits of 0.15 µM and 0.49 µM, respectively, which has potential application value in biological sciences and biotechnology.


Assuntos
Carbono , Peróxido de Hidrogênio , Carbono/química , Peróxido de Hidrogênio/química , Catálise , Nanopartículas de Magnetita/química , Propriedades de Superfície , Glutationa/química , Materiais Biomiméticos/química , Nitrogênio/química , Colorimetria , Biomimética
7.
Biomed Mater ; 19(3)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38626777

RESUMO

This study developed a probe Fe3O4-Cy5.5-trastuzumab with fluorescence and magnetic resonance imaging functions that can target breast cancer with high HER2 expression, aiming to provide a new theoretical method for the diagnosis of early breast cancer. Fe3O4-Cy5.5-trastuzumab nanoparticles were combined with Fe3O4for T2imaging and Cy5.5 for near-infrared imaging, and coupled with trastuzumab for HER2 targeting. We characterized the nanoparticles used transmission electron microscopy, hydration particle size, Zeta potential, UV and Fourier transform infrared spectroscopy, and examined its magnetism, fluorescence, and relaxation rate related properties. CCK-8 and blood biochemistry analysis evaluated the biosafety and stability of the nanoparticles, and validated the targeting ability of Fe3O4-Cy5.5 trastuzumab nanoparticles throughin vitroandin vivocell and animal experiments. Characterization results showed the successful synthesis of Fe3O4-Cy5.5-trastuzumab nanoparticles with a diameter of 93.72 ± 6.34 nm. The nanoparticles showed a T2relaxation rate 42.29 mM-1s-1, magnetic saturation strength of 27.58 emg g-1. Laser confocal and flow cytometry uptake assay showed that the nanoparticles could effectively target HER2 expressed by breast cancer cells. As indicated byin vitroandin vivostudies, Fe3O4-Cy5.5-trastuzumab were specifically taken up and effectively aggregated to tumour regions with prominent NIRF/MR imaging properties. CCK-8, blood biochemical analysis and histological results suggested Fe3O4-Cy5.5-trastuzumab that exhibited low toxicity to major organs and goodin vivobiocompatibility. The prepared Fe3O4-Cy5.5-trastuzumab exhibited excellent targeting, NIRF/MR imaging performance. It is expected to serve as a safe and effective diagnostic method that lays a theoretical basis for the effective diagnosis of early breast cancer. This study successfully prepared a kind of nanoparticles with near-infrared fluorescence imaging and T2imaging properties, which is expected to serve as a new theory and strategy for early detection of breast cancer.


Assuntos
Neoplasias da Mama , Carbocianinas , Imageamento por Ressonância Magnética , Receptor ErbB-2 , Trastuzumab , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Trastuzumab/química , Feminino , Animais , Humanos , Imageamento por Ressonância Magnética/métodos , Receptor ErbB-2/metabolismo , Carbocianinas/química , Camundongos , Linhagem Celular Tumoral , Nanopartículas de Magnetita/química , Camundongos Nus , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Meios de Contraste/química , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Sci Rep ; 14(1): 8820, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627424

RESUMO

Zinc ferrite nanoparticles (ZnF NPs) were synthesized by a green method using Psidium guava Leaves extract and characterized via structural and optical properties. The surface of ZnF NPs was stabilized with citric acid (CA) by a direct addition method to obtain (ZnF-CA NPs), and then lipase (LP) enzyme was immobilized on ZnF-CA NPs to obtain a modified ZnF-CA-LP nanocomposite (NCs). The prepared sample's photocatalytic activity against Methylene blue dye (MB) was determined. The antioxidant activity of ZnF-CA-LP NCs was measured using 1,1-diphenyl-2-picryl hydrazyl (DPPH) as a source of free radicals. In addition, the antibacterial and antibiofilm capabilities of these substances were investigated by testing them against gram-positive Staphylococcus aureus (S. aureus ATCC 25923) and gram-negative Escherichia coli (E. coli ATCC 25922) bacterial strains. The synthesized ZnF NPs were discovered to be situated at the core of the material, as determined by XRD, HRTEM, and SEM investigations, while the CA and lipase enzymes were coated in this core. The ZnF-CA-LP NCs crystallite size was around 35.0 nm at the (311) plane. Results obtained suggested that 0.01 g of ZnF-CA-LP NCs achieved 96.0% removal of 5.0 ppm of MB at pH 9.0. In-vitro zone of inhibition (ZOI) and minimum inhibitory concentration (MIC) results verified that ZnF-CA-LP NCs exhibited its encouraged antimicrobial activity against S. aureus and E. coli (20.0 ± 0.512, and 27.0 ± 0.651 mm ZOI, respectively) & (1.25, and 0.625 µg/ml MIC, respectively). ZnF-CA-LP NPs showed antibiofilm percentage against S. aureus (88.4%) and E. coli (96.6%). Hence, ZnF-CA-LP NCs are promising for potential applications in environmental and biomedical uses.


Assuntos
Nanopartículas de Magnetita , Nanopartículas Metálicas , Psidium , Nanopartículas Metálicas/química , Enzimas Imobilizadas , Lipase , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
9.
Toxicon ; 242: 107707, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38579983

RESUMO

This research presents the synthesis and characterization of Cu-doped Fe3O4 (Cu-Fe3O4) nanoparticles as a magnetically recoverable and reusable detoxifying agent for the efficient and long-lasting neutralization of bacterial toxins. The nanoparticles were synthesized using the combustion synthesis method and characterized through SEM, XRD, BET, TGA, and VSM techniques. The detoxification potential of Cu-Fe3O4 was compared with traditional formaldehyde (FA) in detoxifying epsilon toxin (ETx) from Clostridium perfringens Type D, the causative agent of enterotoxemia in ruminants. In vivo residual toxicity tests revealed that Cu-Fe3O4 could detoxify ETx at a concentration of 2.0 mg mL-1 within 4 days at room temperature (RT) and 2 days at 37 °C, outperforming FA (12 and 6 days at RT and 37 °C, respectively). Characterization studies using dynamic light scattering (DLS) and circular dichroism (CD) highlighted lower conformational changes in Cu-Fe3O4-detoxified ETx compared to FA-detoxified ETx. Moreover, Cu-Fe3O4-detoxified ETx exhibited exceptional storage stability at 4 °C and RT for 6 months, maintaining an irreversible structure with no residual toxicity. The particles demonstrated remarkable reusability, with the ability to undergo five continuous detoxification batches. This study provides valuable insights into the development of an efficient and safe detoxifying agent, enabling the production of toxoids with a native-like structure. The magnetically recoverable and reusable nature of Cu-Fe3O4 nanoparticles offers practical advantages for easy recovery and reuse in detoxification reactions.


Assuntos
Toxinas Bacterianas , Cobre , Formaldeído , Formaldeído/química , Cobre/química , Animais , Toxinas Bacterianas/química , Toxinas Bacterianas/toxicidade , Clostridium perfringens , Nanopartículas de Magnetita/química
10.
J Sep Sci ; 47(5): e2300870, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38471979

RESUMO

Mycotoxin contamination is widespread in plants and herbs, posing serious threats to the consumer and human health. Of them, alternariol (AOH) has attracted great attention as an "emerging" mycotoxin in medicinal herbs. However, a specific and high-throughput extraction method for AOH is currently lacking. Thus, developing an efficient pre-treatment technique for AOH detection is extremely vital. Here, a novel automated magnetic solid-phase extraction method was proposed for the highly efficient extraction of AOH. Combining the aptamer-functionalized magnetic nanoparticles (AMNPs) and the automatic purification instrument, AOH could be extracted in medicinal herbs in high throughput (20 samples) and a short time (30 min). The main parameters affecting extraction were optimized, and the method was finally carried out by incubation AMNPs with 3 mL of sample solution for 10 min, and then desorption in 75% methanol for liquid-phase detection. Under optimal conditions, good reproducibility, stability, and selectivity were realized with an adsorption capacity of 550.84 ng/mg. AOH extraction in three edible herbs showed good resistance to matrix interference with recovery rates from 86% to 111%. In combination with AMNPs and the automatic purification instrument, high-throughput and labor-free extraction of AOH in different complex matrices was achieved, which could be extended in other complex matrices.


Assuntos
Lactonas , Nanopartículas de Magnetita , Micotoxinas , Plantas Medicinais , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes , Micotoxinas/análise , Oligonucleotídeos , Extração em Fase Sólida/métodos
11.
Sci Rep ; 14(1): 5855, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467729

RESUMO

The antifungal efficacy and cytotoxicity of a novel nano-antifungal agent, the Fe3O4@SiO2/Schiff-base complex of Cu(II) magnetic nanoparticles (MNPs), have been assessed for targeting drug-resistant Candida species. Due to the rising issue of fungal infections, especially candidiasis, and resistance to traditional antifungals, there is an urgent need for new therapeutic strategies. Utilizing Schiff-base ligands known for their broad-spectrum antimicrobial activity, the Fe3O4@SiO2/Schiff-base/Cu(II) MNPs have been synthesized. The Fe3O4@SiO2/Schiff-base/Cu(II) MNPs was characterized by Fourier Transform-Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), Energy-dispersive X-ray (EDX), Vibrating Sample Magnetometer (VSM), and Thermogravimetric analysis (TGA), demonstrating successful synthesis. The antifungal potential was evaluated against six Candida species (C. dubliniensis, C. krusei, C. tropicalis, C. parapsilosis, C. glabrata, and C. albicans) using the broth microdilution method. The results indicated strong antifungal activity in the range of 8-64 µg/mL with the lowest MIC (8 µg/mL) observed against C. parapsilosis. The result showed the MIC of 32 µg/mL against C. albicans as the most common infection source. The antifungal mechanism is likely due to the disruption of the fungal cell wall and membrane, along with increased reactive oxygen species (ROS) generation leading to cell death. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay for cytotoxicity on mouse L929 fibroblastic cells suggested low toxicity and even enhanced cell proliferation at certain concentrations. This study demonstrates the promise of Fe3O4@SiO2/Schiff-base/Cu(II) MNPs as a potent antifungal agent with potential applications in the treatment of life-threatening fungal infections, healthcare-associated infections, and beyond.


Assuntos
Nanopartículas de Magnetita , Micoses , Animais , Camundongos , Antifúngicos/farmacologia , Antifúngicos/química , Dióxido de Silício/farmacologia , Dióxido de Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas de Magnetita/química , Candida , Candida albicans , Candida parapsilosis , Testes de Sensibilidade Microbiana
12.
Nanoscale ; 16(15): 7678-7689, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38533617

RESUMO

Magnetic nanoparticles (MNPs) provide new opportunities for enzyme-free biosensing of nucleic acid biomarkers and magnetic actuation by patterning on DNA origami, yet how the DNA grafting density affects their dynamics and accessibility remains poorly understood. Here, we performed surface functionalization of MNPs with single-stranded DNA (ssDNA) via click chemistry with a tunable grafting density, which enables the encapsulation of single MNPs inside a functional polymeric layer. We used several complementary methods to show that particle translational and rotational dynamics exhibit a sigmoidal dependence on the ssDNA grafting density. At low densities, ssDNA strands adopt a coiled conformation that results in minor alterations to particle dynamics, while at high densities, they organize into polymer brushes that collectively influence particle dynamics. Intermediate ssDNA densities, where the dynamics are most sensitive to changes, show the highest magnetic biosensing sensitivity for the detection of target nucleic acids. Finally, we demonstrate that MNPs with high ssDNA grafting densities are required to efficiently couple to DNA origami. Our results establish ssDNA grafting density as a critical parameter for the functionalization of MNPs for magnetic biosensing and functionalization of DNA nanostructures.


Assuntos
Nanopartículas de Magnetita , Ácidos Nucleicos , DNA/química , DNA de Cadeia Simples , Fenômenos Magnéticos , Conformação de Ácido Nucleico
13.
Int J Biol Macromol ; 264(Pt 2): 130730, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462111

RESUMO

Magnetic nanoparticles were functionalized with polyethylenimine (PEI) and activated with epoxy. This support was used to immobilize Lipase (Eversa® Transform 2.0) (EVS), optimization using the Taguchi method. XRF, SEM, TEM, XRD, FTIR, TGA, and VSM performed the characterizations. The optimal conditions were immobilization yield (I.Y.) of 95.04 ± 0.79 %, time of 15 h, ionic load of 95 mM, protein load of 5 mg/g, and temperature of 25 °C. The maximum loading capacity was 25 mg/g, and its stability in 60 days of storage showed a negligible loss of only 9.53 % of its activity. The biocatalyst demonstrated better stability at varying temperatures than free EVS, maintaining 28 % of its activity at 70 °C. It was feasible to esterify free fatty acids (FFA) from babassu oil with the best reaction of 97.91 % and ten cycles having an efficiency above 50 %. The esterification of produced biolubricant was confirmed by NMR, and it displayed kinematic viscosity and density of 6.052 mm2/s and 0.832 g/cm3, respectively, at 40 °C. The in-silico study showed a binding affinity of -5.8 kcal/mol between EVS and oleic acid, suggesting a stable substrate-lipase combination suitable for esterification.


Assuntos
Lipase , Nanopartículas de Magnetita , Lipase/química , Enzimas Imobilizadas/química , Óleos de Plantas/química , Esterificação , Estabilidade Enzimática
14.
ACS Biomater Sci Eng ; 10(4): 2143-2150, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38442336

RESUMO

Highly selective extraction of phosphopeptides is necessary before mass spectrometry (MS) analysis. Herein, zirconium phthalocyanine-modified magnetic nanoparticles were prepared through a simple method. The Fe-O groups on Fe3O4 and the zirconium ions on phthalocyanine had a strong affinity for phosphopeptides based on immobilized metal ion affinity chromatography (IMAC). The enrichment platform exhibited low detection limit (0.01 fmol), high selectivity (α-/ß-casein/bovine serum albumin, 1/1/5000), good reusability (10 circles), and recovery (91.1 ± 1.1%) toward phosphopeptides. Nonfat milk, human serum, saliva, and A549 cell lysate were employed as actual samples to assess the applicability of the enrichment protocol. Metallo-phthalocyanine will be a competitive compound for designing highly efficient adsorbents and offers a new approach to phosphopeptide analysis.


Assuntos
Isoindóis , Nanopartículas de Magnetita , Fosfopeptídeos , Humanos , Fosfopeptídeos/análise , Fosfopeptídeos/química , Zircônio/química , Adsorção
15.
ACS Biomater Sci Eng ; 10(4): 2567-2580, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38529538

RESUMO

In the present study, an innovative and simple electrochemical magneto biosensor based on carboxyethylsilanetriol-modified iron oxide (Fe3O4) magnetic nanoparticles was designed for ultrasensitive and specific analysis of cotinine, an important marker of smoking. Anticotinine antibodies were covalently immobilized on carboxylic acid-modified magnetic nanoparticles, and the cotinine-specific magnetic nanoparticles created a specific surface on the working electrode surface. The use of magnetic nanoparticles as an immobilization platform for antibodies provided a large surface area for antibody attachment and increased sensitivity. In addition, the advantages of the new immobilization platform were reusing the working electrode numerous times, recording repeatable and reproducible signals, and reducing the necessary volume of biomolecules. The specific interaction between cotinine and cotinine-specific antibody-attached magnetic nanoparticles restricted the electron transfer of the redox probe and changed the impedimetric response of the electrode correlated to the concentration of cotinine. The magneto biosensor had a wide detection range (2-300 pg/mL), a low LOD (606 fg/mL), and an acceptable recovery (97.24-105.31%) in real samples. In addition, the current biosensor's measurement results were in good agreement with those found by the standard liquid chromatography (HPLC) and enzyme-linked immunosorbent assay (ELISA) methods. These results showed that a simple impedimetric immunosensing platform was generated for the cotinine analysis.


Assuntos
Cotinina , Nanopartículas de Magnetita , Nanopartículas de Magnetita/química , Técnicas Eletroquímicas
16.
J Pharm Biomed Anal ; 243: 116110, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38513498

RESUMO

In this study, thrombin was immobilized with magnetic particles modified by glutaraldehyde. The changes in secondary structures of immobilized enzyme revealed an increment in conformational rigidity and stability, which can be reflected in temperature and pH stability as well as the tolerance of organic reagents. The optimal reutilization times of magnetic particle immobilized thrombin were 7 times, and the half-life of enzyme activity preserved at room temperature was 5 days, which was 2.5 times higher than that of free enzyme. Ligusticum chuanxiong and Anemarrhenae Rhizoma with high enzyme inhibitory activity were selected for primary screening, and six potential inhibitors of thrombin were identified by HPLC/MS. The results showed that three compounds in Anemarrhenae Rhizoma had better predictive thrombin inhibitory activity. Through the in vitro thrombin activity inhibition experiment, it was also verified that mangiferin and neo-mangiferin had an ideal thrombin activity inhibition effect, which was consistent with the results of molecular docking.


Assuntos
Produtos Biológicos , Medicamentos de Ervas Chinesas , Nanopartículas de Magnetita , Medicamentos de Ervas Chinesas/química , Trombina , Produtos Biológicos/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Enzimas Imobilizadas/química , Anticoagulantes
17.
J Mater Chem B ; 12(14): 3494-3508, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38512116

RESUMO

Magnetite (Fe3O4) nanoparticle (MNP)-substituted glass-ceramic (MSGC) powders with compositions of (45 - x)SiO2-24.5CaO-24.5Na2O-6P2O5-xFe3O4 (x = 5, 8, and 10 wt%) have been prepared by a sol-gel route by introducing Fe3O4 nanoparticles during the synthesis. The X-ray diffraction patterns of the as-prepared MSGC nanopowders revealed the presence of combeite (Na2Ca2Si3O9), magnetite, and sodium nitrate (NaNO3) crystalline phases. Heat-treatment up to 700 °C for 1 h resulted in the complete dissolution of NaNO3 along with partial conversion of magnetite into hematite (α-Fe2O3). Optimal heat-treatment of the MSGC powders at 550 °C for 1 h yielded the highest relative percentage of magnetite (without hematite) with some residual NaNO3. The saturation magnetization and heat generation capacity of the MSGC fluids increased with an increase in the MNP content. The in vitro bioactivity of the MSGC pellets was evaluated by monitoring the pH and the formation of a hydroxyapatite surface layer upon immersion in modified simulated body fluid. Proliferation of MG-63 osteoblast cells indicated that all of the MSGC compositions were non-toxic and MSGC with 10 wt% MNPs exhibited extraordinarily high cell viability. The MSGC with 10 wt% MNPs demonstrated optimal characteristics in terms of cell viability, magnetic properties, and induction heating capacity, which surpass those of the commercial magnetic fluid FluidMag-CT employed in hyperthermia treatment.


Assuntos
Materiais Biocompatíveis , Compostos Férricos , Nanopartículas de Magnetita , Materiais Biocompatíveis/química , Dióxido de Silício/química , Óxido Ferroso-Férrico , Calefação , Cerâmica/farmacologia , Cerâmica/química
18.
Int J Biol Macromol ; 264(Pt 1): 130594, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437931

RESUMO

This study investigated the homogeneous synthesis of cellulose acetate (CA) and propionate (CP) with varying degrees of substitution (DS) from sisal cellulose in a N, N-dimethylacetamide/lithium chloride (DMAc/LiCl) solvent system. These esters were used to prepare neat (CADSF/CPDSF) and nanocomposite films (CADSFFe/CPDSFFe) from prior synthesized magnetite nanoparticles (NPs, Fe3O4, 5.1 ± 0.5 nm). Among the CA and CP series, the composite CA0.7FFe and the neat CP0.7F films exhibited the highest modulus of elasticity, 2105 MPa and 2768 MPa, respectively, probably a consequence of the continuous fibrous structures present on the surface of these films. Microsphere formation on the film's surface was observed in scanning electron microscopy micrographs. This points to applications in the controlled release of targeted substances. The VSM analysis showed that the cellulosic matrices preserved the superparamagnetic characteristics of the NPs. This study suggested a reduced coupling effect between nanoparticles inside polymeric films due to magnetic saturation at low fields. CA0.7FFe and CA1.3FFe composite films reached a saturation magnetization (MSAT) of 46 emu/g around 7 kOe field. Hosting magnetite nanoparticles in cellulose ester matrices may be an interesting way to develop new functional cellulose-based materials, which have the potential for diverse applications, including microelectromechanical systems and microsensors.


Assuntos
Nanopartículas de Magnetita , Nanocompostos , Ésteres/química , Celulose/química , Microscopia Eletrônica de Varredura , Nanocompostos/química
19.
Water Res ; 254: 121435, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461605

RESUMO

Abandoning the costly development of new membrane materials and instead directly remodeling the naturally occurring cake layer constitutes a dynamic, low-cost, long-lasting, and proactive strategy to "fight fouling with fouling". Several optimization strategies, including coagulation/modified magnetic seed loading and applying a weak magnetic force (0.01T) at the ultrafiltration end, improved the anti-fouling, retention, and sieving performances of conventional ultrafiltration process during the treatment of source water having complex natural organic matter (NOMs) and small molecule micropollutants. Two modified magnetic seeds we prepared were composite nano-seed particles (Fe3O4@SiO2-NH2 (FS) and Fe3O4@SiO2@PAMAM-NH2 (FSP)). Aim of the study was to regulate the formation of cake layer via comprehensive testing of the antifouling properties of optimized processes and related mechanistic studies. It was found to be essential to enhance the interception of xanthate and tryptophan proteins in the cake layer for improving the anti-fouling performance based on the correlation and redundancy analyses, while the use of modified magnetic seeds and magnetic field showed a significant positive impact on water production. Blockage modeling demonstrated the ability to form a mature cake layer during the initial filtration stage swiftly. This mitigated the risk of irreversible fouling caused by pore blockage during the early stage of coagulation-ultrafiltration. Morphologically, the reconstructed cake layer exhibited elevated surface porosity, an internal cavity channel structure, and enhanced roughness that can promote increased water flux and retention of water impurities. These optimized the maturity of the cake layer in both time and space. Density Functional Theory (DFT), Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, and Modified Extended Derjaguin-Landau-Verwey-Overbeek (MDLVO) calculations indicated aggregation behavior of matter on the cake layer to be enhanced effectively due to magnetic seed loading. This is mainly due to the strengthening of polar interactions, including hydrogen bonding, π-π* conjugation, etc., which can happen between the cake layer loaded with FSP and the organic matter. Under the influence of a magnetic field, magnetic force energy (VMF) significantly impacts the system by eliminating energy barriers. This research will provide innovative strategies for effectively purifying intricate source water through ultrafiltration while controlling membrane fouling.


Assuntos
Incrustação Biológica , Nanopartículas de Magnetita , Purificação da Água , Ultrafiltração , Incrustação Biológica/prevenção & controle , Dióxido de Silício , Membranas Artificiais , Água
20.
Molecules ; 29(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38542988

RESUMO

Magnetic nanoparticles (MNPs), either paramagnetic or superparamagnetic depending on their composition and size, have been thoroughly studied as magnetic resonance imaging (MRI) contrast agents using in vitro and in vivo biomedical preclinical studies, while some are clinically used. Their magnetic properties responsible in some cases for high magnetization values, together with large surface area-to-volume ratios and the possibility of surface functionalization, have been used in MRI-based diagnostic and theranostics applications. MNPs are usually used as positive (T1) or negative (T2) MRI contrast agents, causing brightening or darkening of selected regions in MRI images, respectively. This review focusses on recent developments and optimization of MNPs containing Gd, Mn, Fe and other lanthanide ions which may function as dual-mode T1-T2 MRI contrast agents (DMCAs). They induce positive or negative contrast in the same MRI scanner upon changing its operational mode between T1-weighted and T2-weighted pulse sequences. The type of contrast they induce depends critically on their r2/r1 relaxivity ratio, which for DMCAs should be in the 2-10 range of values. After briefly discussing the basic principles of paramagnetic relaxation in MNPs, in this review, the basic strategies for the rational design of DMCAs are presented and typical examples are discussed, including in vivo preclinical applications: (1) the use of NPs with a single type of contrast material, Gd- or Mn-based NPs or superparamagnetic NPs with appropriate size and magnetization to provide T2 and T1 contrast; and (2) inclusion of both types of T1 and T2 contrast materials in the same nanoplatform by changing their relative positions.


Assuntos
Elementos da Série dos Lantanídeos , Nanopartículas de Magnetita , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Gadolínio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA